Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Antibiotics (Basel) ; 12(4)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2313323

ABSTRACT

Antimicrobial resistance (AMR) is one of the world's industrialized nations' biggest issues. It has a significant influence on the ecosystem and negatively affects human health. The overuse of antibiotics in the healthcare and agri-food industries has historically been defined as a leading factor, although the use of antimicrobial-containing personal care products plays a significant role in the spread of AMR. Lotions, creams, shampoos, soaps, shower gels, toothpaste, fragrances, and other items are used for everyday grooming and hygiene. However, in addition to the primary ingredients, additives are included to help preserve the product by lowering its microbial load and provide disinfection properties. These same substances are released into the environment, escaping traditional wastewater treatment methods and remaining in ecosystems where they contact microbial communities and promote the spread of resistance. The study of antimicrobial compounds, which are often solely researched from a toxicological point of view, must be resumed considering the recent discoveries, to highlight their contribution to AMR. Parabens, triclocarban, and triclosan are among the most worrying chemicals. To investigate this issue, more effective models must be chosen. Among them, zebrafish is a crucial study system because it allows for the assessment of both the risks associated with exposure to these substances as well as environmental monitoring. Furthermore, artificial intelligence-based computer systems are useful in simplifying the handling of antibiotic resistance data and speeding up drug discovery processes.

2.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2312651

ABSTRACT

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Subject(s)
COVID-19 , Disinfectants , Humans , Quaternary Ammonium Compounds/chemistry , Pandemics , Anti-Bacterial Agents
3.
Sustainability ; 15(8):6867, 2023.
Article in English | ProQuest Central | ID: covidwho-2299051

ABSTRACT

In order to keep the home and occupational environment clean and non-infectious, the consumption of cleaners and disinfectants, including cosmetics, is increasing. Excessive use of these products results in their accumulation in the aquatic environment. Conventional wastewater treatment plants are unable to effectively remove the emergent pollutants, including personal care products. This article is focused on the monitoring of the presence of personal care products in surface waters in two river basins in the Slovak Republic, in terms of the surfactant content. Ecotoxicological evaluation of the selected samples from the monitored river basins was performed by an acute toxicity test using the test organism Daphnia magna. The monitoring results indicate the presence of personal care products in the aquatic environment which poses an ecological and environmental risk. Monitoring in the Hron and Nitra river basins confirmed contamination with the surfactants, to which the measures related to the COVID-19 pandemic contributed. The content of the surfactants in personal care products is significant, and their impact on the aquatic environment is not sufficiently monitored.

4.
Environmental Reviews ; 31(1):76-94, 2023.
Article in English | Academic Search Complete | ID: covidwho-2270994

ABSTRACT

In response to the coronavirus (COVID-19) pandemic, there has been an increased need for personal and environmental decontamination to aid in curbing transmission of the SARS-CoV-2 virus. Products used for this purpose include sanitizers for hands and disinfectants for surfaces. The active chemical ingredients used in these products, termed antimicrobials, can enter waste streams after application and may be emerging as more prominent environmental contaminants. Even prior to COVID-19, there was recognized need to examine their implications for aquatic biota, which is now made more pressing due to their exaggerated use in response to the pandemic. Our objectives were to identify current antimicrobial active ingredients, quantify their increased use, and determine which may be candidates for further consideration as possible aquatic contaminants. By consulting multiple sources of publicly available information in Canada, we identified current-use antimicrobials from the lists of sanitizers and surface disinfectants approved for use against SARS-CoV-2 by Health Canada and the drug registration database. To estimate the use of sanitizers and disinfectants, we evaluated import quantities and grocery store retail sales of related compounds and products (Statistics Canada) and both lines of evidence supported increased use trends. The list of identified antimicrobials was refined to include only candidates with potential to reach aquatic ecosystems, and information on their environmental concentrations and toxicity to aquatic biota was reviewed. Candidate antimicrobials (n = 32) fell into four main categories: quaternary ammonium compounds (QACs), phenols, acids, and salts. Benzalkonium chloride, a QAC, was the most prominent active ingredient used in both nonalcohol-based hand sanitizers and surface disinfectants. Four QACs followed in prevalence and the next most used antimicrobial was triclosan (hand sanitizers only), an established and regulated environmental contaminant. Little information was found on environmental concentrations of other candidates, suggesting that the majority would fall into the category of emerging contaminants if they enter aquatic systems. Several were classified as acutely or chronically toxic to aquatic biota (Globally Harmonized System), and thus we recommend empirical research begin focusing on environmental monitoring of all candidate antimicrobials as a critical next step, with detection method development first where needed. (English) [ABSTRACT FROM AUTHOR] En réponse à la pandémie de coronavirus (COVID-19), un besoin accru de décontamination personnelle et environnementale s'est manifesté pour aider à freiner la transmission du virus SRAS-CoV-2. Les produits utilisés à cette fin comprennent des assainisseurs pour les mains et des désinfectants pour les surfaces. Les ingrédients chimiques actifs utilisés dans ces produits, appelés antimicrobiens, peuvent entrer dans les systèmes des eaux usées après leur application et peuvent devenir des contaminants environnementaux plus importants. Avant même l'avènement de la COVID-19, on reconnaissait qu'il était nécessaire d'examiner leurs implications pour le biote aquatique, ce qui est aujourd'hui rendu plus urgent en raison de leur utilisation exagérée en réponse à la pandémie. Nos objectifs consistaient à identifier les ingrédients actifs antimicrobiens actuels, à quantifier leur utilisation accrue et à déterminer ceux qui pourraient être considérés comme des contaminants aquatiques potentiels. En consultant de multiples sources d'information publiquement accessibles au Canada, nous avons pu identifiéer les antimicrobiens utilisés actuellement à partir des listes d'assainisseurs et de désinfectants de surface dont l'utilisation contre le SRAS-CoV-2 a été approuvée par Santé Canada, et de la base de données sur les produits pharmaceutiques. Pour estimer l'utilisation des assainisseurs et des désinfectants, nous avons évalué les quantités importées et les ventes au détail dans les épiceries de composés et de produits connexes (Statistique Canada) et les deux sources de données ont confirmé les tendances à l'augmentation de l'utilisation. La liste des antimicrobiens identifiés a été affinée pour n'inclure que les candidats susceptibles d'atteindre les écosystèmes aquatiques, et les informations sur leurs concentrations environnementales et leur toxicité pour le biote aquatique ont été examinées. Les antimicrobiens candidats (n = 32) se répartissent en quatre grandes catégories: les composés d'ammonium quaternaire (CAQ), les phénols, les acides et les sels. Le chlorure de benzalkonium, un CAQ, était l'ingrédient actif le plus utilisé dans les désinfectants non alcoolisés pour les mains et les désinfectants de surface. Quatre CAQ suivaient en prévalence et l'antimicrobien le plus utilisé ensuite était le triclosan (uniquement dans les désinfectants pour les mains), un contaminant environnemental avéré et réglementé. Peu d'informations sur les concentrations environnementales des autres candidats étaient accessibles, ce qui suggère que la majorité d'entre eux entreraient dans la catégorie des contaminants émergents s'ils pénètrent dans les systèmes aquatiques. Plusieurs d'entre eux ont été classés comme présentant une toxicité aiguë ou chronique pour le biote aquatique (Système général harmonisé de classification et d'étiquetage des produits chimiques, SGH). Les auteurs recommandent donc que la recherche empirique commence à se concentrer sur la surveillance environnementale de tous les candidats antimicrobiens comme prochaine étape critique, en commençant par le développement de méthodes de détection si nécessaire. Le texte intégral de l'article en français est disponible parmi les documents supplémentaires. (French) [ABSTRACT FROM AUTHOR] Copyright of Environmental Reviews is the property of Canadian Science Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

5.
Chemosensors ; 11(2):141, 2023.
Article in English | ProQuest Central | ID: covidwho-2260894

ABSTRACT

This paper describes for the first time the surface modification of glassy carbon (GC) electrodes with bamboo-based renewable carbon (RC) and antimony nanoparticles (SbNPs) for the determination of methylparaben (MePa) in personal care products (PCPs). The synthesized RC-SbNP material was successfully characterized by scanning electron microcopy, energy-dispersive X-ray spectroscopy and cyclic voltammetry. The proposed sensor was applied in the detection of MePa using the optimized parameters by differential pulse voltammetry (DPV). The analytical range for detection of MePa was 0.2 to 9.0 µmol L−1, with limits of detection and quantification of 0.05 µmol L−1 and 0.16 µmol L−1, respectively. The determination of MePa in real PCP samples was performed using the proposed GC/RC-SbNP sensor by DPV and UV-vis spectrophotometry as comparative methodology. The use of RC-SbNP material for the development of electrochemical sensors brings a fresh approach to low-cost devices for MePa analysis.

6.
Science of the Total Environment ; 857, 2023.
Article in English | Scopus | ID: covidwho-2242733

ABSTRACT

The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay. © 2022 Elsevier B.V.

7.
Sci Total Environ ; 872: 162114, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2237466

ABSTRACT

Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.


Subject(s)
Anti-Infective Agents , COVID-19 , Carbanilides , Triclosan , Humans , Triclosan/toxicity , Carbanilides/toxicity , Anti-Bacterial Agents , Risk Assessment
8.
Environmental Reviews ; 2022.
Article in English | Web of Science | ID: covidwho-2214013

ABSTRACT

In response to the coronavirus (COVID-19) pandemic, there has been an increased need for personal and environmental decontamination to aid in curbing transmission of the SARS-CoV-2 virus. Products used for this purpose include sanitizers for hands and disinfectants for surfaces. The active chemical ingredients used in these products, termed antimicrobials, can enter waste streams after application and may be emerging as more prominent environmental contaminants. Even prior to COVID19, there was recognized need to examine their implications for aquatic biota, which is now made more pressing due to their exaggerated use in response to the pandemic. Our objectives were to identify current antimicrobial active ingredients, quantify their increased use, and determine which may be candidates for further consideration as possible aquatic contaminants. By consulting multiple sources of publicly available information in Canada, we identified current-use antimicrobials from the lists of sanitizers and surface disinfectants approved for use against SARS-CoV-2 by Health Canada and the drug registration database. To estimate the use of sanitizers and disinfectants, we evaluated import quantities and grocery store retail sales of related compounds and products (Statistics Canada) and both lines of evidence supported increased use trends. The list of identified antimicrobials was refined to include only candidates with potential to reach aquatic ecosystems, and information on their environmental concentrations and toxicity to aquatic biota was reviewed. Candidate antimicrobials (n = 32) fell into four main categories: quaternary ammonium compounds (QACs), phenols, acids, and salts. Benzalkonium chloride, a QAC, was the most prominent active ingredient used in both nonalcohol-based hand sanitizers and surface disinfectants. Four QACs followed in prevalence and the next most used antimicrobial was triclosan (hand sanitizers only), an established and regulated environmental contaminant. Little information was found on environmental concentrations of other candidates, suggesting that the majority would fall into the category of emerging contaminants if they enter aquatic systems. Several were classified as acutely or chronically toxic to aquatic biota (Globally Harmonized System), and thus we recommend empirical research begin focusing on environmental monitoring of all candidate antimicrobials as a critical next step, with detection method development first where needed.

9.
Huanjing Kexue/Environmental Science ; 43(12):5522-5533, 2022.
Article in Chinese | Scopus | ID: covidwho-2203843

ABSTRACT

During the CIVID-19 pandemic, water samples were collected from 26 sampling points in 18 typical drinking water sources in Wuhan, located in the middle reaches of the Yangtze River. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were used to measure the concentrations of 31 pharmaceuticals and personal care products (PPCPs) in the water samples. The pollution characteristics of PPCPs were analyzed and their ecological and health risks were assessed. The results showed that a total of 23 PPCPs were detected in the 26 sampling points. Among them, five types of PPCPs were detected with a detection rate of 100%, with total concentrations ranging from 102.44 ng•L -1 to 745.78 ng•L -1, and the average concentration was 206.87 ng•L -1. The highest concentrations were in salicylic acid (SA) and doxycycline (DIC), ranging from 28.24 to 534.24 ng•L -1 and 28.72 to 416.6 ng•L -1, respectively. According to the spatial distribution of PPCPs, the concentration of antibiotics in the Hanjiang River was higher than that in the Yangtze River, whereas the concentration of other types of PPCPs in the Yangtze River was higher than that in the Hanjiang River. The ecological risk assessment results showed that the toxic risk in algae was higher than those in invertebrates and fish. The risks of salicylic acid (SA), doxycycline (DIC), lincomycin (LIN), and chlortetracycline (CTE) to algae were at a high level, and the ecological risk of PPCPs in the Hanjiang River was generally higher than that in the Yangtze River. The health risk assessment results showed that the risk to adults and children by drinking water ranged from 1.14 × 10 -4 to 0.136 and from 1.04 × 10 -4 to 0.821, respectively. The health risk to children was higher than that to adults, although their levels were low. Compared with the concentrations of PPCPs in drinking water sources of Wuhan in recent years, under the CIVID-19 pandemic, the pollution status of PPCPs in the Yangtze River was at a medium level, whereas it was at a high level in the Hanjiang River. © 2022 Science Press. All rights reserved.

10.
Environ Chem Lett ; 20(6): 3883-3904, 2022.
Article in English | MEDLINE | ID: covidwho-2128753

ABSTRACT

Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01498-7.

11.
Int J Environ Res Public Health ; 19(9)2022 05 06.
Article in English | MEDLINE | ID: covidwho-1953339

ABSTRACT

This study examined product use among pregnant women and new mothers in New York City during the COVID-19 pandemic (July 2020-June 2021). Women reported use of personal care and household cleaning products within the previous month, changes in antibacterial product use, receipt of healthcare provider advice, and opinions on environmental chemicals (n = 320). On average, women used 15 personal care products and 7 household cleaning products. Non-Hispanic Black women used nearly two more personal care products; non-Hispanic Black women, those with a college degree, and essential workers used 1-3 more household cleaning products. Women who were Hispanic or reported their race and ethnicity as Other were two times more likely to use antibacterial personal care products. Non-Hispanic Black, Hispanic, and women who reported their race and ethnicity as Other were 1.5 times more likely to increase antibacterial product use during the pandemic. Nearly all women agreed that environmental chemicals pose health risks and are impossible to avoid, while less than one quarter received advice regarding product use. Product use is a modifiable source of chemical exposures. Results from this study suggest that women may have increased their product use during the pandemic. Healthcare providers may use the current focus on health hygiene to promote discussion and assessment of environmental chemical exposures with patients.


Subject(s)
COVID-19 , Cosmetics , Anti-Bacterial Agents , COVID-19/epidemiology , Female , Humans , Mothers , Pandemics , Pregnancy , Pregnant Women
12.
ACS ES&T Water ; 2022.
Article in English | Web of Science | ID: covidwho-1937401

ABSTRACT

Understanding per capita rates of disease incidence or prevalence from wastewater surveillance data requires an estimate of the population contributing to wastewater samples, given that populations in large urban areas are dynamic, especially if major events, such as the onset of the COVID-19 pandemic, cause large population shifts. To assess whether commonly measured wastewater parameters can be used to estimate sewershed populations, we used wastewater data collected from New York City's (NYC) 14 wastewater treatment facilities to evaluate the relationship between influent loads of four wastewater parameters -ammonia, total Kjeldahl nitrogen, total suspended solids, and five-day carbonaceous biochemical oxygen demand -and census-based population estimates of the corresponding sewersheds during 2019, when populations were assumed to be relatively stable. Ammonia mass load had the most consistent relationship with sewershed population, regardless of wet weather contributions to NYC's predominantly combined sewer system. Changes in ammonia loads due to COVID-19 restrictions enacted in March 2020 generally reflected population shifts in sewersheds serving areas of Manhattan and Brooklyn, for which previous studies report decreased commuter mobility and residential populations. Our findings highlight the utility of ammonia mass load in influent wastewater as a population indicator to normalize wastewater-based epidemiology data and track sewershed population dynamics.

13.
Anal Chim Acta ; 1203: 339650, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1729460

ABSTRACT

Because of the coronavirus pandemic, hydroalcoholic gels have become essential products to prevent the spread of COVID-19. This research aims to develop a simple, fast and sustainable microextraction methodology followed by gas chromatography tandem mass spectrometry (GC-MS/MS) to analyze simultaneously 60 personal care products (PCPs) including fragrances allergens, synthetic musks, preservatives and plasticizers in hand sanitizers. Micro-matrix-solid-phase dispersion (µMSPD) and solid-phase microextraction (SPME) were compared with the aim of obtaining high sensitivity and sample throughput. SPME demonstrated higher efficiency being selected as sample treatment. Different dilutions of the sample in ultrapure water were assessed to achieve high sensitivity but, at the same time, to avoid or minimize matrix effect. The most critical parameters affecting SPME (fibre coating, extraction mode and temperature) were optimized by design of experiments (DOE). The method was successfully validated in terms of linearity, precision and accuracy, obtaining recovery values between 80 and 112% for most compounds with relative standard deviation (RSD) values lower than 10%. External calibration using standards prepared in ultrapure water demonstrated suitability due to the absence of matrix effect. Finally, the simple, fast and high throughput method was applied to the analysis of real hydroalcoholic gel samples. Among the 60 target compounds, 39 of them were found, highlighting the high number of fragrance allergens, at concentrations ranging between 0.01 and 217 µg g-1. Most of the samples were not correctly labelled attending cosmetic Regulation (EU) No 1223/2009, and none of them followed the World Health Organization (WHO) recommendation for hand sanitizers formulation.


Subject(s)
COVID-19 , Cosmetics , Hand Sanitizers , Cosmetics/analysis , Gas Chromatography-Mass Spectrometry/methods , Gels , Hand Sanitizers/analysis , Humans , Pandemics , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods
14.
Environ Toxicol Chem ; 41(5): 1179-1192, 2022 05.
Article in English | MEDLINE | ID: covidwho-1473831

ABSTRACT

The early months of the COVID-19 pandemic and the associated shutdowns disrupted many aspects of daily life and thus caused changes in the use and disposal of many types of chemicals. While records of sales, prescriptions, drug overdoses, and so forth provide data about specific chemical uses during this time, wastewater and sewage sludge analysis can provide a more comprehensive overview of chemical changes within a region. We analyzed primary sludge from a wastewater-treatment plant in Connecticut, USA, collected March 19 to June 30, 2020. This time period encompassed the first wave of the pandemic, the initial statewide stay at home order, and the first phase of reopening. We used liquid chromatography-high-resolution mass spectrometry and targeted and suspect screening strategies to identify 78 chemicals of interest, which included pharmaceuticals, illicit drugs, disinfectants, ultraviolet (UV) filters, and others. We analyzed trends over time for the identified chemicals using linear trend analyses and multivariate comparisons (p < 0.05). We found trends related directly to the pandemic (e.g., hydroxychloroquine, a drug publicized for its potential to treat COVID-19, had elevated concentrations in the week following the implementation of the US Emergency Use Authorization), as well as evidence for seasonal changes in chemical use (e.g., increases for three UV-filter compounds). Though wastewater surveillance during the pandemic has largely focused on measuring severe acute respiratory syndrome-coronavirus-2 RNA concentrations, chemical analysis can also show trends that are important for revealing the public and environmental health effects of the pandemic. Environ Toxicol Chem 2022;41:1179-1192. © 2021 SETAC.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Communicable Disease Control , Disinfectants/analysis , Gas Chromatography-Mass Spectrometry , Humans , Mental Health , Pandemics , Sewage/chemistry , Wastewater/chemistry , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 807(Pt 2): 150873, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1461845

ABSTRACT

Antimicrobial resistance (AMR) is emerging as a severe concern due to the escalating instances of resistant human pathogens encountered by health workers. Consequently, there is a shortage of antibiotics to treat Multidrug Resistance (MDR) and Extensively Drug Resistance (XDR) patients. The primary cause of AMR is the vast array of anthropogenic disturbances in natural microfauna brought about by the extensive use of antibiotics. Coronavirus Disease of 2019 (COVID-19) has crashed antibiotic stewardship and single-handedly increased the global usage of antibiotics, Personal Protective Equipment (PPE), and biocide, causing a ripple effect in the existing global AMR problem. This surge in antibiotic usage has escalated the residual antibiotics reaching Wastewater Treatment Plants (WWTPs) from pharmaceutical companies, health care centers, and domestic settings. Ultimately the natural water bodies receiving their effluents will have higher concentrations of emerging contaminants as the WWTPs cannot remove the Pharmaceuticals and Personal Care Products (PPCPs) completely. Furthermore, increased biocides usage will increase AMR by co-resistance, and increasing plastics will turn into microplastics and get converted to plastisphere, which will further enhance its propagation. Therefore, it is crucial to curb antibiotic usage, implement antibiotic stewardship dynamically; and, ameliorate the present condition of WWTPs to remove residual PPCPs efficiently. The need of the hour is to address the grave threat of AMR, which is loitering silently; if not the mankind will endure more affliction hereafter.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Anthropogenic Effects , Drug Resistance, Bacterial , Humans , Plastics , SARS-CoV-2
16.
J Hazard Mater ; 418: 126249, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1244766

ABSTRACT

Intensified use of disinfectants to control COVID-19 could unintentionally increase the disinfection byproducts (DBPs) in the environment. In indoor spaces, it is critical to determine the optimal disinfection practice to prevent the spread of the virus while keeping DBPs at relatively low levels in the air. The formation of DBPs exceed 0.1 µg/mg while hypochlorite dosed at >10 mg/m3. The total DBP concentrations in highly disinfected places (100-200 mg/m3 hypochlorite) were as high as 66.8 µg/m3, and the Hazard Index (HI) was up to 0.84, and both values were much higher than those in less disinfected places (<10 mg/m3 hypochlorite). Taking into account the HI, formation yields and the origin of the DBPs, we recommended 10 mg/m3 as the suggested hypochlorite dose to minimize DBPs generation during routine disinfection for controlling the coronavirus. DBPs in indoor air could be eliminated by ventilation, reducing the usage of personal care products, and wiping the solid surface with water before or after disinfection. These results highlighted the necessity to control air-borne DBPs and their associated health risks arising from intensified disinfection, and will guide the further development of evidence-based regulation on DBP exposure during disinfection and improve public health protection.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Humans , Pandemics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
17.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1129755

ABSTRACT

A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography-mass spectrometry (LC-MS) and elemental analysis and was further employed for DHBI-TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10-6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2-11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98-102%) was observed.


Subject(s)
Biosensing Techniques/methods , Cations/chemistry , Cosmetics/analysis , Disinfectants/analysis , Imidazoles/chemistry , Potentiometry/methods , Surface-Active Agents/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL